

中国航空研究院 Chinese Aeronautical Establishment

Progress and applications of ARI_Boom software for sonic boom prediction

Qian Zhansen, Wang Di, Leng Yan, Liu Zhongchen, Gao Liangjie

AVIC Aerodynamics Research Institute (AVIC ARI)

APISAT 2023, Lingshui, China

Oct. 16-18, 2023

Introduction of ARI_Boom in-house code

Effects of atmospheric turbulence

Future work of ARI_Boom

Introduction of ARI_Boom in-house code

Effects of atmospheric turbulence

Future work of ARI_Boom

Civil aircraft plays an important role in the transportation system

- > Market demands for high Mach civil transport
- Passengers have more demands for efficiency and comfort in air travel

- Ultra-long distance travel —— Transoceanic and transcontinental
 - Travel across the Pacific and Atlantic
 - Travel across the Eurasian Continent
- □ Medium distance travel —— Connect major business cities
 - Travel from Tokyo/Seoul to Sanya
 - Travel from Harbin to Urumchi
- ◆ High speed railway has brought a huge impact on civilian aircraft market More Impact is on the way !

- □ China Fuxing Railway (CR): 350km/h → □ Back and forth between different cities in one day
- □ New generation: $500 \sim 600$ km/h $\sum \Box$ Back and forth between different provinces in one day
- □ Hyperloop: >1000km/h

Back and forth between different regions in one day

Flight time always needs be reduced !

The speed of future civil transport needs to break through sound speed

Capital 2 hours Economic Circle \succ

中国地图

地区里 天津 1:22.000.000 审图号: GS(2016)2879号

Capital 2 hours Economic Circle

Future supersonic transport

中国地图

自然资源部 监制

Capital 2 hours Economic Circle

Present high speed train (350Km/h)

Large diameter means more infrastructure costs

Infrastructure costs has nothing to do with distance

Global One Day Economic Circle

> The first generation of supersonic civil aircraft

Ma: 2.02 Rang: 6000km Passengers: 100

Ma: 2.35 Rang: 6500km Passengers: 140

> What will happen to the second generation ?

In our opinion, there will be three types according to the Mach number.

• Supersonic transport —— continuation of the first generation

• Cruising Mach number: $1.0 < M \le 2.5$ More realistic!

High supersonic transport (Sub-hypersonic speed)

• Cruising Mach number: $2.5 \le M \le 4.5$

• Hypersonic transport

• Cruising Mach number: 4.5<M

> New generation of supersonic civil aircraft

Supersonic civil aircraft is still a hot topic for international research

> Key technologies for next generation supersonic civil aircraft

Pressure impulse: Sudden explod, Intense fluction, Wide impact range

Current prediction methods of sonic boom

Introduction of ARI_Boom in-house code

Effects of atmospheric turbulence

Future work of ARI_Boom

Overall framework of ARI_Boom

AVIC

Overall framework of ARI_Boom

> Near-field CFD numerical simulation — ARI OVERSET

Main characteristics

- Compressible RANS solver
- 2nd order finite volume schemes
- Steady & unsteady flows

Numerical Technology

- Advanced meshes
 - Unstructured hybrid meshes
 - Dynamic overset meshes
 - Adaptive meshes
- Advanced turbulence models
 - Hybrid RANS/LES models
 - Transition models

High performance computing cluster

- 2200 Tflops capability HUAWEI
- Massively parallel computations

AVIC

Far-field propagation

Main characteristics

LWPE (Linear Wave Propagation Equation)

- ✓ Waveform Parameter Method
- **D** NWPE (Nonlinear Wave Propagation Equation)
 - ✓ Augmented Burgers equation
 - ✓ Lossy nonlinear Tricomi equation (LNTE)
 - ✓ Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation

Real atmosphere model

- \checkmark Stratified atmosphere model
- ✓ Wind
- ✓ Turbulence in ABL

Numerical Technology

- **D** Thomas method
 - ✓ Ray tracing
- □ Time/frequency domain solver
 - ✓ Fraction method
 - ✓ High order finite difference scheme

Sonic boom characteristics
 sensitivity assessment

> Atmosphere condition —— Real atmospheric environment

Ray

Ray tracing method (Geometric Acoustic Theory)

> NWPE —— Thomas waveform parameter Method^[1]

The characteristics of sonic boom are controlled by 3 parameters:

[1] Thomas C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method. NASA TN D-6832, 1972.

Comparison of calculation results with JAXA

CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin: The University of Texas at Austin, 1995.
 WANG D, QIAN Z S, LENG Y. High order scheme discretization of the sonic boom propagation model based on augmented Burgers equation. Acta Aeronautica et Astronautica Sinica, 2022, 43(01): 289-301.

> NWPE —— Lossy Nonlinear Tricomi equation^[1] (LNTE)

Salamone, J A., Sparrow, V W, and Plotkin, K J. Solution of the Lossy Nonlinear Tricomi Equation Applied to Sonic Boom FocusingAIAA Journal, 51(7): 1745–1754, 2013.
 Salamone, J A, Sparrow, V W. SCAMP: Solution of the Lossy Nonlinear Tricomi Equation for Sonic Boom Focusing, AIAA paper 2013-0935, 2013.
 Leng Y, Zhang J B, Qian Z S. Superboom simulation for vehicles at supersonic maneuvering flight[J]. Acta Aerodynamica Sinica, 2023, 41(06): 45-54.

NWPE — Lossy Nonlinear Tricomi equation (LNTE)

SCAMP flight test^[1]

Pressure distribution by numerical simulation

- \blacktriangleright Length: 46.3 meters
- ➤ Ma number: 1.23
- ➤ Cruise altitude: 12.8 km
- ➤ Mach rate: 0.0035/s
- > Attack angle: 2.3°
- ≻ R/L: 3

 \overline{z} =0.15 \overline{z} =-0.22 **Comparison between flight test data and numerical solutions** plied to Sonic Boom Focusing AIAA Journal 51(7): 1745–1754 2013

[1] Salamone, J A., Sparrow, V W, and Plotkin, K J. Solution of the Lossy Nonlinear Tricomi Equation Applied to Sonic Boom Focusing. AIAA Journal, 51(7): 1745–1754, 2013. [2] Leng Y, Zhang J B, Qian Z S. Superboom simulation for vehicles at supersonic maneuvering flight. Acta Aerodynamica Sinica, 2023, 41(06): 45-54.

> Sensitivity assessment^[1] -

Band pressure level

[1] Stevens S S. Perceiced level of noise by Mark VII and decibels (E). The Journal of the Acoustical Society of America, 1972.

Introduction of ARI_Boom in-house code

Effects of atmospheric turbulence

Future work of ARI_Boom

> Phenomenon of atmospheric turbulence

[1] HILTON DA, HUCKEL V, MAGLIERI DJ. Sonic boom measurements during bomber training operations in the Chicago area[R]. NASA TN-3655, 1966.

> Atmospheric turbulent field

Non-uniformity of wind profiles

• Terrain (mountains, city buldings.....)

D Thermal convection effect

- Surface warming
- Ground surface (desert, ocean.....)

(The temperature difference between day and night leads to different turbulence intensities at different time periods)

Climate/Weather

•

Isoline diagram of near ground vortex structure

Mainly considering the **wind** and **temperature** fluctuation

Atmospheric turbulent field

Altitude of ABL: 500m \checkmark

- Transverse distance: 300m
 - spacing: 0.5m
- Inner turbulence scale: 0.001m
- Outer turbulence scale: 40m
- Fourier number: 300
- Variance of the velocity of the \checkmark fluctuated wind: 1.0 m/s

Wind fluctuation:

$$\begin{cases} \boldsymbol{u}(\boldsymbol{r}) = 2\sum_{n=1}^{M} \sqrt{E(k_n) \Delta k_n} \cos(\boldsymbol{k}_n \cdot \boldsymbol{r} + \varphi_n) \cdot \boldsymbol{N}(k_n) \\ \boldsymbol{N}(k_n) \cdot \boldsymbol{k}_n = 0 \end{cases}$$

Von Karn $E(k_n) =$

$$\frac{1}{2} \frac{G(17/6)}{G(1/3)} \frac{k_n^4}{\left(k_n^2 + 1/L_0^2\right)^{17/6}} \exp\left(-\frac{k_n^2}{k_m^2}\right)$$

Temperature fluctuation

✓ Altitude of ABL • 500m

- Transverse distance: 300m
 - spacing: 0.5m
- Inner turbulence scale: 0.001m
- Outer turbulence scale: 40m
- Fourier number: 300
- Variance of the fluctuated \checkmark temperature: 1.0 K

Temperature fluctuation:

$$\boldsymbol{T}'(\boldsymbol{r}) = \sum_{n=1}^{M} \sqrt{G(k_n) \Delta k_n} \cos(\boldsymbol{k}_n \cdot \boldsymbol{r} + \varphi_n)$$

where.

$$G(k_n) = \frac{2\sigma_{T'}^2 L_0^{-5/3}}{\psi\left(1, \frac{1}{6}, \frac{1}{k_m^2 L_0^2}\right)} \frac{k_n}{\left(k_n^2 + 1/L_0^2\right)^{11/6}} \exp\left(-\frac{k_n^2}{k_m^2}\right)$$

D fast prediction method with high efficiency

> 1D fast prediction method with low reliability

Adding the effects of **homogenous** atmospheric turbulence to the popular ray tracing method is more **convenient** and **feasible**, even just **partial effects** can be considered

The ray tracing
$$\begin{cases}
R(i+1) = R(i) + \Delta R(i) \\
N(i+1) = N(i) + \Delta N(i)
\end{cases}$$

$$\Delta R(i) = \begin{bmatrix} \alpha_0(i)N(i) + V_0(i) \end{bmatrix} \Delta t$$

$$\Delta N(i) = \begin{bmatrix} \Delta N_x(i) \\ \Delta N_y(i) \\ \Delta N_z(i) \end{bmatrix} = F(i) \begin{bmatrix} N_x(i)N_z(i) \\ N_y(i)N_z(i) \\ -N_x^2(i) - N_y^2(i) \end{bmatrix} \Delta t$$

$$F(i) = N_x(i) \frac{dV_{0x}}{dz}(i) + N_y(i) \frac{dV_{0y}}{dz}(i) + N_z(i) \frac{dV_{0x}}{dz}(i) + \frac{d\alpha_0}{dz}(i)$$
Trilinear interpolation—performed on the random turbulent velocities into the ray path
$$C = C_{000}(1 - x_d)(1 - y_d)(1 - z_d) + C_{100}x_d(1 - y_d)(1 - z_d)$$

$$+ C_{010} (1 - x_{d}) y_{d} (1 - z_{d}) + C_{001} (1 - x_{d}) (1 - y_{d}) z_{d}$$

+ $C_{101} x_{d} (1 - y_{d}) z_{d} + C_{011} (1 - x_{d}) y_{d} z_{d}$
+ $C_{110} x_{d} y_{d} (1 - z_{d}) + C_{111} x_{d} y_{d} z_{d}$
 $x_{d} = \frac{x - x_{0}}{x_{0} - x_{1}} \quad y_{d} = \frac{y - y_{0}}{y_{0} - y_{1}} \quad z_{d} = \frac{z - z_{0}}{z_{0} - z_{1}}$

SU COLO SU COLO SU COLO SU COLO SU COLO COLO CLOO

[1] YAMASHITA H, OBAYASHI S. Sonic Boom Variability Due to Homogeneous Atmospheric Turbulence. Journal of Aircraft, 2009, 46(6): 1886-1893.

> Multi-dimensional prediction method with high reliability

Schematic diagram of sonic boom propagation in atmospheric boundary layer

y/m

200

100

> Caeses — a typical N-waveform

- > overpressure: 50Pa
- duration time: 0.1s
- ➤ rise time: 0.001s
- height of ABL: 500m
- Standard deviation of wind fluctuation: 1.0m/s
- Standard deviation of temperature fluctuation: 1.0K
- > outer turbulence scale: 40m

The predicted distorted waveform

Typical P-waveform and R-waveform

Effects of atmospheric turbulent intensity on sonic boom

Standard deviation of wind fluctuation:

0.5、1.0、2.0 m/s

- ✓ Standard deviation of temperature fluctuation: 1.0 K
- ✓ Height of ABL: 1,000 m

- ✓ Outer turbulence scale: 40m
- ✓ Fourier modes: 400
- ✓ Transverse range: 200 * 200 m²
- ✓ Grid spacing: 1.0m
- ✓ Total grids: 80 million
- Total data on ground: 40 thousand

v _{sd.} (m/s)	increase	decrease	P _{paek} range	Ave. P _{peak}	Sd. P _{peak}	Max. PLdB
0.5	51.19%	48.81%	39.86 ~ 91.03	51.90	7.93	107.97
1.0	54.93%	45.07%	38.83 ~ 113.85	53.55	10.14	110.27
2.0	63.37%	36.63%	37.76 ~ 146.23	56.67	13.40	111.68

AVIC

Effects of atmospheric turbulent intensity on sonic boom

- $\checkmark\,$ Standard deviation of wind fluctuation: 1.0 m/s
- ✓ Standard deviation of temperature fluctuation: 0.5, 1.0, 2.0 K
- ✓ Height of ABL: 1,000 m

T _{sd.} (k)	increase	decrease	P _{paek} range	Ave. P _{peak}	Sd. P _{peak}	Max. PLdB
0.5	53.96%	46.04%	39.32 ~ 95.80	52.55	8.25	108.36
1.0	54.93%	45.07%	38.83 ~ 113.85	53.55	10.14	110.27
2.0	59.57%	40.43%	37.19 ~ 148.15	55.64	13.56	112.38

□ The greater disturbance of wind and temperature field, the more severe distortion of sonic boom

> Effects of atmospheric turbulent intensity on sonic boom

- Standard deviation of wind fluctuation: 1.0 m/s \checkmark
- Standard deviation of temperature fluctuation: 1.0 K \checkmark
- Height of ABL: 500, 800, 1,000 m

H = 800m

H = 1,000m

height/m	increase	decrease	P _{paek} range	Ave. P _{peak}	Sd. P _{peak}	Max. PLdB
500	57.43%	42.57%	39.88 ~ 89.34	51.73	5.69	107.47
800	53.25%	46.75%	38.34 ~ 103.32	52.81	8.77	109.43
1000	54.93%	45.07%	38.83 ~ 113.85	53.55	10.14	110.27

The distortion of sonic boom becomes more severe as the atmospheric boundary layer height increases

Introduction of ARI_Boom in-house code

Effects of atmospheric turbulence

Future work of ARI_Boom

4. Future work of ARI_Boom

- > Efficient and reliable numerical methods for 3D turbulence effects
- Ground physical experiments on the interaction between turbulence and sonic boom, and improve the numerical model
 - wind tunnel
 - sonic boom simulator
- Flight test to obtain real data for the code validation
- > Effects of the complex terrain on the propagation of sonic boom near the ground

This work is supported by

- 1. National Nature Science Foundation of China (NSFC No. 11672280; No. 12372234);
- 2. Aviation Science Foundation of China (ASF No. 2014ZA27004).

中国航空研究院 Chinese Aeronautical Establishment

Connect the Aerospace and the Earth

Thank you for attention !

